Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171349, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438030

RESUMO

Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Benzo(a)pireno/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Células Epiteliais , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/farmacologia , Retroalimentação , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
2.
Sci Total Environ ; 922: 171237, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423337

RESUMO

Arsenic (As), a common environmental pollutant, has become a hot topic in recent years due to its potentially harmful effects. Liver damage being a central clinical feature of chronic arsenic poisoning. However, the underlying mechanisms remain unclear. We demonstrated that arsenic can lead to oxidative stress in the liver and result in structural and functional liver damage, significantly correlated with the expression of AUF1, Dicer1, and miR-155 in the liver. Interestingly, knockdown AUF1 promoted the up-regulatory effects of arsenic on Dicer1 and miR-155 and the inhibitory effects on SOD1, which exacerbated oxidative damage in rat liver. However, overexpression of AUF1 reversed the up-regulatory effects of arsenic on Dicer1 and miR-155, restored arsenic-induced SOD1 depletion, and attenuated liver oxidative stress injury. Further, we verified the mechanism and targets of miR-155 in regulating SOD1 by knockdown/overexpression of miR-155 and nonsense mutant SOD1 3'UTR experiments. In conclusion, these results powerfully demonstrate that arsenic inhibits AUF1 protein expression, which in turn reduces the inhibitory effect on Dicer1 expression, which promotes miR-155 to act on the SOD1 3'UTR region after high expression, thus inhibiting SOD1 protein expression and enzyme activity, and inducing liver injury. This finding provides a new perspective for the mechanism research and targeted prevention of arsenic poisoning, as well as scientific evidence for formulating strategies to prevent and control environmental arsenic pollution.


Assuntos
Intoxicação por Arsênico , Arsênio , Fígado , MicroRNAs , Animais , Ratos , Regiões 3' não Traduzidas , Arsênio/toxicidade , Intoxicação por Arsênico/prevenção & controle , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonuclease III/farmacologia , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia
3.
Drug Resist Updat ; 73: 101054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277756

RESUMO

AIMS: Sirtuin 7 (SIRT7) plays an important role in tumor development, and has been characterized as a potent regulator of cellular stress. However, the effect of SIRT7 on sorafenib acquired resistance remains unclear and a possible anti-tumor mechanism beyond this process in HCC has not been clarified. We examined the therapeutic potential of SIRT7 and determined whether it functions synergistically with sorafenib to overcome chemoresistance. METHODS: Cancer Genome Atlas-liver HCC data and unbiased gene set enrichment analyses were used to identify SIRT7 as a potential effector molecule in sorafenib acquired resistance. Two types of SIRT7 chemical inhibitors were developed to evaluate its therapeutic properties when synergized with sorafenib. Mass spectrometry was performed to discover a direct target of SIRT7, DDX3X, and DDX3X deacetylation levels and protein stability were explored. Moreover, an in vivo xenograft model was used to confirm anti-tumor effect of SIRT7 and DDX3X chemical inhibitors combined with sorafenib. RESULTS: SIRT7 inhibition mediated DDX3X depletion can re-sensitize acquired sorafenib resistance by disrupting NLRP3 inflammasome assembly, finally suppressing hyperactive ERK1/2 signaling in response to NLRP3 inflammasome-mediated IL-1ß inhibition. CONCLUSIONS: SIRT7 is responsible for sorafenib acquired resistance, and its inhibition would be beneficial when combined with sorafenib by suppressing hyperactive pro-cell survival ERK1/2 signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Fosforilação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sistema de Sinalização das MAP Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/farmacologia
4.
J Biochem Mol Toxicol ; 38(1): e23530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37822284

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disease, and its prevalence increases steadily with age. Circular RNAs (circRNAs) are involved in various neurodegenerative diseases. Here, we aimed to explore the role of circRNA DLG-associated protein 4 (circDLGAP4) in 1-methyl-4-phenylpyridinium ion (MPP+ )-induced neuronal injury in PD. SH-SY5Y cells were treated with MPP+ to establish PD cell models. The levels of circDLGAP4 and high mobility group AT-hook 2 (HMGA2) in SH-SY5Y cells were detected. SH-SY5Y cell viability and apoptosis were detected. The levels of inflammatory damage (IL-1ß, IL-6, TNF-α) and oxidative stress (reactive oxygen species, lactate dehydrogenase, superoxide dismutase, and malondialdehyde)-related factors were measured. The binding of eukaryotic initiation factor 4A3 (EIF4A3) to circDLGAP4 and HMGA2 was analyzed using RNA pull-down or RNA immunoprecipitation. The stability of HMGA2 was detected after actinomycin D treatment, and its effects on neuronal injury were tested. CircDLGAP4 expression was decreased in MPP+ -induced SH-SY5Y cells. CircDLGAP4 upregulation restored cell activity, decreased apoptosis, and reduced inflammatory damage and oxidative stress in PD cell models. CircDLGAP4 bound to EIF4A3 to increase HMGA2 expression and stability. Silencing HMGA2 attenuated the protective effect of circDLGAP4 overexpression. Overall, circDLGAP4 upregulated HMGA2 by recruiting EIF4A3, thus increasing the mRNA stability of HMGA2 and alleviating neuronal injury in PD.


Assuntos
MicroRNAs , Neuroblastoma , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Linhagem Celular Tumoral , RNA Helicases DEAD-box/farmacologia , Fator de Iniciação 4A em Eucariotos , MicroRNAs/metabolismo , Doença de Parkinson/genética , RNA Circular/genética
5.
Anticancer Res ; 43(12): 5459-5474, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030186

RESUMO

BACKGROUND/AIM: Osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, is a highly effective and valuable treatment option for advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations, such as T790M. However, acquired resistance ultimately limits its clinical application. In this study, we aimed to identify potential targets for overcoming osimertinib resistance. MATERIALS AND METHODS: The H1975/OSI cell line was induced in vitro through intermittent induction. Cell activity was measured using a cell counting kit-8 assay. Uni-omics and multi-omics analyses were conducted on the transcriptomic and proteomic (4D label-free) expression profiles, which involved differential expression analysis, GO functional annotation and KEGG pathway enrichment analysis, as well as correlation analysis of transcription factors and PPI network. RESULTS: H1975/OSI cells showed resistance towards osimertinib with IC50 values approximately 5.25-fold higher than H1975 cells. A total of 2519 genes were found to be differentially expressed genes (DEGs) and 1533 proteins were found to be differentially abundant proteins (DAPs). Furthermore, 147 genes that were differentially expressed at both the transcription and protein levels (TPGs) were identified as being differentially expressed in both the transcriptome and proteome. It was revealed that many pathways related to the structure and function of ribosomes, as well as metabolites, were altered. The highest connectivity genes of 147 TPGs included NOP56, DDX21, PDCD11, CCNB1, and TOP2A. The hub genes of the transcriptional regulatory network included DDX21, KPNA2, DDX5, BRCA1, LMNB1, and HIF1A. CONCLUSION: Collectively, our high-throughput analysis uncovered functional properties that interacted with gene signatures of H1975/OSI cells, and highlighted certain pathways and eleven hub genes that may be the potential targets for improving clinical osimertinib resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/genética , Proteômica , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/farmacologia , Proteínas Nucleares/genética , Antígenos de Histocompatibilidade Menor
6.
Curr Med Sci ; 43(3): 560-571, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142816

RESUMO

OBJECTIVE: Cisplatin (CDDP)-based chemotherapy is a first-line, drug regimen for muscle-invasive bladder cancer (BC) and metastatic bladder cancer. Clinically, resistance to CDDP restricts the clinical benefit of some bladder cancer patients. AT-rich interaction domain 1A (ARID1A) gene mutation occurs frequently in bladder cancer; however, the role of CDDP sensitivity in BC has not been studied. METHODS: We established ARID1A knockout BC cell lines using CRISPR/Cas9 technology. IC50 determination, flow cytometry analysis of apoptosis, and tumor xenograft assays were performed to verify changes in the CDDP sensitivity of BC cells losing ARID1A. qRT-PCR, Western blotting, RNA interference, bioinformatic analysis, and ChIP-qPCR analysis were performed to further explore the potential mechanism of ARID1A inactivation in CDDP sensitivity in BC. RESULTS: It was found that ARID1A inactivation was associated with CDDP resistance in BC cells. Mechanically, loss of ARID1A promoted the expression of eukaryotic translation initiation factor 4A3 (EIF4A3) through epigenetic regulation. Increased expression of EIF4A3 promoted the expression of hsa_circ_0008399 (circ0008399), a novel circular RNA (circRNA) identified in our previous study, which, to some extent, showed that ARID1A deletion caused CDDP resistance through the inhibitory effect of circ0008399 on the apoptosis of BC cells. Importantly, EIF4A3-IN-2 specifically inhibited the activity of EIF4A3 to reduce circ0008399 production and restored the sensitivity of ARID1A inactivated BC cells to CDDP. CONCLUSION: Our research deepens the understanding of the mechanisms of CDDP resistance in BC and elucidates a potential strategy to improve the efficacy of CDDP in BC patients with ARID1A deletion through combination therapy targeting EIF4A3.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
7.
J Pharm Pharmacol ; 75(2): 253-263, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36179123

RESUMO

OBJECTIVES: To investigate the function and regulatory mechanisms of delphinidin in the treatment of hepatocellular carcinoma. METHODS: HepG2 and HuH-7 cells were treated with different concentrations of delphinidin. Cell viability was analysed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell autophagy and autophagic flux were analysed by LC3b-green fluorescent protein (GFP)-Adv and LC3b-GFP-monomeric red fluorescent protein-Adv transfected HepG2 and HuH-7 cells, respectively. Cell apoptosis was analysed by Hoechst33342 staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and DNA laddering. Cell autophagy, apoptosis and survival related protein expressions were detected by Western blotting. KEY FINDINGS: After treatment with different concentrations of delphinidin, the cell survival rate was significantly decreased. Delphinidin could block the autophagic flux, resulting in a significant increase in autophagosomes, and led to an increase in cell apoptosis. The combined application of delphinidin and cisplatin could promote the antitumour effect and reduce the dose of cisplatin in tumour cells. Further mechanism studies reveal that delphinidin could inhibit the multidrug resistance gene 1 (MDR1) and the tumour-promoting transcription cofactor DEAD-box helicase 17 (DDX17) expression in tumour cells. Overexpression of DDX17 could reverse delphinidin's antitumor function in tumour cells. CONCLUSIONS: Delphinidin has a strong anti-tumour effect by inducing tumour cell autophagic flux blockage and apoptosis by inhibiting of both MDR1 and DDX17 expression.


Assuntos
Cisplatino , Neoplasias Hepáticas , Humanos , Cisplatino/farmacologia , Genes MDR , Apoptose , Autofagia , Linhagem Celular Tumoral , RNA Helicases DEAD-box/farmacologia
8.
Cancer Biol Ther ; 23(1): 1-14, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36310384

RESUMO

Sorafenib (SFN) is a multi-kinase inhibitor drug for the treatment of advanced hepatocellular carcinoma (HCC), but its limited efficacy is a major obstacle to the clinical outcomes of patients with HCC. We aimed to explore a novel molecular mechanism underlying the chemosensitivity of HCC to SFN, and to identify a promising therapeutic target for HCC treatment. In this study, bioinformatic analysis revealed that DDX24 was associated with poor survival in HCC cases, and significantly related to the pathways modulating tumor development. DDX24 regulated HCC cell proliferation and migration potentials. Moreover, reduction of DDX24 promoted the sorafenib-mediated inhibition of HCC cell growth and migration, the elevation of sorafenib-induced HCC cell apoptosis. DDX24 overexpression suppressed the inhibitory effect of SFN on cell proliferation and migration and reduced the apoptosis induced by SFN. Further, DDX24, combined with SFN treatment, presented a synergistic enhancement of the sensitivity of SFN to the growth and migration of HCC cells via AKT/ERK and the epithelial-mesenchymal transition (EMT) pathways, and that it modulated apoptosis via the caspase/PARP pathway. Mechanistically, SNORA18 served as a target gene for DDX24, regulating the chemosensitivity of sorafenib-treated HCC cells. Furthermore, SNORA18 knockdown or overexpression could partially reverse the inhibition or elevation of cell viability, colony formation and migration induced by DDX24 in sorafenib-treated HCC cells, respectively. Collectively, our results suggest that DDX24 regulates the chemosensitivity of HCC to SFN by mediating the expression of SNORA18, which may act as an effective therapeutic target for improving SFN efficiency in HCC treatment.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/farmacologia
9.
Neurotox Res ; 40(6): 1989-2000, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36151390

RESUMO

As a clinically widely used anesthetic, ketamine (KET) has been reported to cause neurotoxicity in patients. Our work aimed to probe the function of long-chain non-coding RNA taurine-upregulated gene 1 (lncRNA TUG1) in KET-induced neurotoxicity. HT22 cells were subjected to KET to build the cell model. 3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide (MTT) assay was employed to determine cell viability. Additionally, cell apoptosis was evaluated by flow cytometry. The binding relationships among TUG1, DEAD-box RNA helicase 3X (DDX3X), and Bcl-2-associated athanogene 5 (BAG5) were verified by RIP and RNA pull-down assays. Cell viability was impaired and cell apoptosis was increased in KET-treated HT22 cells accompanied by increased TUG1, DDX3X, and BAG5 expressions. TUG1 knockdown dramatically enhanced cell viability and repressed the of KET-induced apoptosis in HT22 cells, while TUG1 overexpression presented the opposite effects. In addition, we found that TUG1 promoted DDX3X expression via directly binding with DDX3X. As expected, DDX3X overexpression abolished the palliative effect of TUG1 knockdown on KET-induced neurotoxicity. Further research proved that TUG1 increased the stability of BAG5 through interacting with DDX3X. Finally, as expected, the moderating effect of TUG1 knockdown on KET-induced neuron injury was abolished by BAG5 overexpression. Taken together, TUG1 promoted BAG5 expression by binding DDX3X to exacerbate KET-induced neurotoxicity.


Assuntos
Ketamina , RNA Longo não Codificante , Humanos , Ketamina/toxicidade , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neurônios/metabolismo , Apoptose , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
10.
Pest Manag Sci ; 78(8): 3519-3527, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35576366

RESUMO

BACKGROUND: Nicotinic acetylcholine receptors (nAChRs) are major excitatory neurotransmitter receptors in insects and also the target site for many insecticides. Unfortunately, the effectiveness of these insecticides is diminishing as a consequence of the evolution of insecticide resistance. Further exploration of insecticide targets is important to sustainable pest management. RESULTS: In order to validate the role of nAChR subunits in insecticide susceptibility and test whether the subunit's absence imposes the fitness cost on insects, we determined the susceptibility of eight nAChR subunit deletion mutants of Drosophila melanogaster to nine insecticides. These findings highlighted the specific resistance of the Dα6 deletion mutant to spinosyns. Although triflumezopyrim, dinotefuran and imidacloprid are competitive modulators of nAChRs, differences in susceptibility of the insect with different deletion mutants suggested that the target sites of these three insecticides do not overlap completely. Mutants showed decreased susceptibility to insecticides, accompanied by a reduction in fitness. The number of eggs produced by Dα1attP , Dα2attP , Dß2attP and Dß3attP females was significantly lesser than that of the vas-Cas9 strain as the control. In addition, adults of Dα2attP , Dα3attP and Dα7attP strains showed lower climbing performance. Meanwhile, males of Dα3attP , Dα5attP , Dß2attP and Dß3attP , and females of Dß2attP showed significantly shorter longevity than those of the vas-Cas9 strain. CONCLUSION: This study provides new insights into the interactions of different insecticides with different nAChRs subunit in D. melanogaster as a research model, it could help better understand such interaction in agricultural pests whose genetic manipulations for toxicological research are often challenging. © 2022 Society of Chemical Industry.


Assuntos
Proteínas de Drosophila , Inseticidas , Receptores Nicotínicos , Animais , RNA Helicases DEAD-box/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Masculino , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Receptores Nicotínicos/genética
11.
J Biochem Mol Toxicol ; 36(8): e23077, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35467791

RESUMO

The life-threatening adverse effects of doxorubicin (Dox) caused by its cardiotoxic properties limit its clinical application. DDX3X has been shown to participate in a variety of physiological processes, and it acts as a regulator of Wnt/ß-catenin signaling. However, the role of DDX3X in Dox-induced cardiotoxicity (DIC) remains unclear. In this study, we found that DDX3X expression was significantly decreased in H9c2 cardiomyocytes treated with Dox. Ddx3x knockdown and RK-33 (DDX3X ATPase activity inhibitor) pretreatment exacerbated cardiomyocyte apoptosis and mitochondrial dysfunction induced by Dox treatment. In contrast, Ddx3x overexpression ameliorated the DIC response. Moreover, Wnt/ß-catenin signaling in cardiomyocytes treated with Dox was suppressed, but this suppression was reversed by Ddx3x overexpression. Overall, this study demonstrated that DDX3X plays a protective role in DIC by activating Wnt/ß-catenin signaling.


Assuntos
Cardiotoxicidade , RNA Helicases DEAD-box , Doxorrubicina , Via de Sinalização Wnt , Animais , Apoptose , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Linhagem Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Ratos , beta Catenina/metabolismo
12.
Anim Genet ; 53(2): 193-202, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34963194

RESUMO

Variations in the Y-chromosome are usually correlated with male-specific traits. However, this condition has been described only sporadically, even in human genetics. The present study was conducted to clone the full-length gene sequence of ovine DEAD-box helicase 3, Y-linked (DDX3Y), and investigate the effect of the expression and variation of DDX3Y on the reproductive traits of Hu sheep. Consequently, we identified the full coding sequence and genomic sequence of ovine DDX3Y. Quantitative PCR (qPCR) analysis showed that ovine DDX3Y was highly expressed in testis, and the expression level increased during testicular development. Furthermore, individuals with larger testis at 6 months expressed significantly more DDX3Y mRNA in the testis than individuals with smaller testis. Notably, a novel SNP (g. 12657 C>A) in the 3' untranslated region was identified in Hu sheep and Tan sheep according to the investigation of the full DDX3Y genomic sequence of 1069 individuals from nine sheep breeds. Association analysis revealed that the SNP was significantly related to testis size in Hu sheep. Meanwhile, Hu rams with the derived C allele showed significantly higher expression levels of DDX3Y in testis than those with the ancestral A allele. In addition, data mining in a previous study showed that the C allele cosegregated with the globally major Y-chromosomal haplogroups y-HA and y-HC, and the A allele is found in all rams with haplogroups y-HB1, y-HB2 and y-HD. This study suggests that the association of the Y-chromosomal haplogroups with testis size in Hu sheep can be extrapolated to the sheep population worldwide.


Assuntos
RNA Helicases DEAD-box , Testículo , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Expressão Gênica , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Mutação , Ovinos/genética , Testículo/metabolismo
13.
Gut ; 71(5): 991-1005, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34021034

RESUMO

OBJECTIVE: RNA helicase DDX5 is downregulated during HBV replication and poor prognosis HBV-related hepatocellular carcinoma (HCC). The objective of this study is to investigate the role of DDX5 in interferon (IFN) signalling. We provide evidence of a novel mechanism involving DDX5 that enables translation of transcription factor STAT1 mediating the IFN response. DESIGN AND RESULTS: Molecular, pharmacological and biophysical assays were used together with cellular models of HBV replication, HCC cell lines and liver tumours. We demonstrate that DDX5 regulates STAT1 mRNA translation by resolving a G-quadruplex (rG4) RNA structure, proximal to the 5' end of STAT1 5'UTR. We employed luciferase reporter assays comparing wild type (WT) versus mutant rG4 sequence, rG4-stabilising compounds, CRISPR/Cas9 editing of the STAT1-rG4 sequence and circular dichroism determination of the rG4 structure. STAT1-rG4 edited cell lines were resistant to the effect of rG4-stabilising compounds in response to IFN-α, while HCC cell lines expressing low DDX5 exhibited reduced IFN response. Ribonucleoprotein and electrophoretic mobility assays demonstrated direct and selective binding of RNA helicase-active DDX5 to the WT STAT1-rG4 sequence. Immunohistochemistry of normal liver and liver tumours demonstrated that absence of DDX5 corresponded to absence of STAT1. Significantly, knockdown of DDX5 in HBV infected HepaRG cells reduced the anti-viral effect of IFN-α. CONCLUSION: RNA helicase DDX5 resolves a G-quadruplex structure in 5'UTR of STAT1 mRNA, enabling STAT1 translation. We propose that DDX5 is a key regulator of the dynamic range of IFN response during innate immunity and adjuvant IFN-α therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Regiões 5' não Traduzidas/genética , Antivirais/farmacologia , Carcinoma Hepatocelular/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Vírus da Hepatite B , Hepatócitos/metabolismo , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Neoplasias Hepáticas/metabolismo , Biossíntese de Proteínas , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Helicases/farmacologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Replicação Viral
14.
Genomics ; 113(5): 3015-3029, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182081

RESUMO

Small nucleolar RNAs (snoRNAs) are an important group of non-coding RNAs that have been reported to play a key role in the occurrence and development of various cancers. Here we demonstrate that Small nucleolar RNA 42 (SNORA42) enhanced the proliferation and migration of Oesophageal squamous carcinoma cells (ESCC) via the DHX9/p65 axis. Our results found that SNORA42 was significantly upregulated in ESCC cell lines, tissues and serum of ESCC patients. The high expression level of SNORA42 was positively correlated with malignant characteristics and over survival probability of patients with ESCC. Through in vitro and in vivo approaches, we demonstrated that knockdown of SNORA42 significantly impeded ESCC growth and metastasis whereas overexpression of SNORA42 got opposite effects. Mechanically, SNORA42 promoted DHX9 expression by attenuating DHX9 transports into the cytoplasm, to protect DHX9 from being ubiquitinated and degraded. From the KEGG analysis of Next-Generation Sequencing, the NF-κB pathway was one of the most regulated pathways by SNORA42. SNORA42 enhanced phosphorylation of p65 and this effect could be reversed by NF-κB inhibitor, BAY11-7082. Moreover, SNORA42 activated NF-κB signaling through promoting the transcriptional co-activator DHX9 interacted with p-p65, inducing NF-κB downstream gene expression. In summary, our study highlights the potential of SNORA42 is up-regulated in ESCC and promotes ESCC development partly via interacting with DHX9 and triggering the DHX9/p65 axis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , NF-kappa B/genética , Proteínas de Neoplasias/metabolismo , RNA Nucleolar Pequeno , Transdução de Sinais , Fator de Transcrição RelA
15.
PLoS Pathog ; 15(5): e1007771, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31136641

RESUMO

Positive-stranded RNA viruses replicate inside cells and depend on many co-opted cellular factors to complete their infection cycles. To combat viruses, the hosts use conserved restriction factors, such as DEAD-box RNA helicases, which can function as viral RNA sensors or as effectors by blocking RNA virus replication. In this paper, we have established that the plant DDX17-like RH30 DEAD-box helicase conducts strong inhibitory function on tombusvirus replication when expressed in plants and yeast surrogate host. The helicase function of RH30 was required for restriction of tomato bushy stunt virus (TBSV) replication. Knock-down of RH30 levels in Nicotiana benthamiana led to increased TBSV accumulation and RH30 knockout lines of Arabidopsis supported higher level accumulation of turnip crinkle virus. We show that RH30 DEAD-box helicase interacts with p33 and p92pol replication proteins of TBSV, which facilitates targeting of RH30 from the nucleus to the large TBSV replication compartment consisting of aggregated peroxisomes. Enrichment of RH30 in the nucleus via fusion with a nuclear retention signal at the expense of the cytosolic pool of RH30 prevented the re-localization of RH30 into the replication compartment and canceled out the antiviral effect of RH30. In vitro replicase reconstitution assay was used to demonstrate that RH30 helicase blocks the assembly of viral replicase complex, the activation of the RNA-dependent RNA polymerase function of p92pol and binding of p33 replication protein to critical cis-acting element in the TBSV RNA. Altogether, these results firmly establish that the plant DDX17-like RH30 DEAD-box helicase is a potent, effector-type, restriction factor of tombusviruses and related viruses. The discovery of the antiviral role of RH30 DEAD-box helicase illustrates the likely ancient roles of RNA helicases in plant innate immunity.


Assuntos
Antivirais/farmacologia , RNA Helicases DEAD-box/farmacologia , Proteínas de Plantas/metabolismo , Tombusvirus/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/virologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , /metabolismo , Tombusvirus/fisiologia , Proteínas Virais/genética , Montagem de Vírus/efeitos dos fármacos
16.
Int J Mol Sci ; 19(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642538

RESUMO

Asp-Glu-Ala-Asp (DEAD)-box polypeptide 5 (DDX5), also called p68, is a prototypical member of the large ATP-dependent RNA helicases family and is known to participate in all aspects of RNA metabolism ranging from transcription to translation, RNA decay, and miRNA processing. The roles of DDX5 in cell cycle regulation, tumorigenesis, apoptosis, cancer development, adipogenesis, Wnt-ß-catenin signaling, and viral infection have been established. Several RNA viruses have been reported to hijack DDX5 to facilitate various steps of their replication cycles. Furthermore, DDX5 can be bounded by the viral proteins of some viruses with unknown functions. Interestingly, an antiviral function of DDX5 has been reported during hepatitis B virus and myxoma virus infection. Thus, the precise roles of this apparently multifaceted protein remain largely obscure. Here, we provide a rapid and critical overview of the structure and functions of DDX5 with a particular emphasis on its role during virus infection.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Vírus de DNA/efeitos dos fármacos , Vírus de RNA/fisiologia , Adipogenia , Animais , Antivirais/farmacologia , Ciclo Celular , RNA Helicases DEAD-box/farmacologia , Humanos , Modelos Moleculares , Conformação Proteica , Replicação Viral
17.
Artigo em Inglês | MEDLINE | ID: mdl-28676847

RESUMO

Hantaviruses encompass rodent-borne zoonotic pathogens that cause severe hemorrhagic fever disease with high mortality rates in humans. Detection of infectious virus titer lays a solid foundation for virology and immunology researches. Canonical methods to assess viral titers rely on visible cytopathic effects (CPE), but Hantaan virus (HTNV, the prototype hantavirus) maintains a relatively sluggish life cycle and does not produce CPE in cell culture. Here, an in-cell Western (ICW) assay was utilized to rapidly measure the expression of viral proteins in infected cells and to establish a novel approach to detect viral titers. Compared with classical approaches, the ICW assay is accurate and time- and cost-effective. Furthermore, the ICW assay provided a high-throughput platform to screen and identify antiviral molecules. Potential antiviral roles of several DExD/H box helicase family members were investigated using the ICW assay, and the results indicated that DDX21 and DDX60 reinforced IFN responses and exerted anti-hantaviral effects, whereas DDX50 probably promoted HTNV replication. Additionally, the ICW assay was also applied to assess NAb titers in patients and vaccine recipients. Patients with prompt production of NAbs tended to have favorable disease outcomes. Modest NAb titers were found in vaccinees, indicating that current vaccines still require improvements as they cannot prime host humoral immunity with high efficiency. Taken together, our results indicate that the use of the ICW assay to evaluate non-CPE Hantaan virus titer demonstrates a significant improvement over current infectivity approaches and a novel technique to screen antiviral molecules and detect NAb efficacies.


Assuntos
Anticorpos Neutralizantes/imunologia , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Vírus Hantaan/imunologia , Replicação Viral/imunologia , Células A549 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais , Antivirais/isolamento & purificação , Linhagem Celular , Chlorocebus aethiops , RNA Helicases DEAD-box/farmacologia , Células HEK293 , Vírus Hantaan/efeitos dos fármacos , Vírus Hantaan/genética , Febre Hemorrágica com Síndrome Renal/tratamento farmacológico , Febre Hemorrágica com Síndrome Renal/prevenção & controle , Humanos , Imunidade Humoral , Interferons/farmacologia , Células Vero , Proteínas Virais/metabolismo , Vacinas Virais
18.
Fish Shellfish Immunol ; 62: 356-365, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28126619

RESUMO

The use of molecular adjuvants to improve the immunogenicity of DNA vaccines has been thoroughly studied in recent years. Glycoprotein (G)-based DNA vaccines had been proven to be effective in combating infection against Rhabdovirus (especially infectious hematopoietic necrosis virus, IHNV) in salmonids. DDX41 is a helicase known to induce antiviral and inflammatory responses by inducing a type I IFN innate immune response. To gain more information regarding G-based DNA vaccines in olive flounder (Paralicthys olivaceus), we tried to develop a more efficient G-based DNA vaccine by adding a molecular adjuvant, DDX41. We designed a DNA vaccine in which the VHSV glycoprotein (G-protein) and DDX41 were driven by the EF-1α and CMV promoters, respectively. Olive flounders were intramuscularly immunized with 1 µg of plasmids encoding the G-based DNA vaccine alone (pEF-G), the molecular adjuvant alone (pEF-D), or the vaccine-adjuvant construct (pEF-GD). At two different time points, 15 and 30 days later, the fish were intraperitoneally infected with VHSV (100 µL; 1 × 106 TCID50/mL). Our assays revealed that the plasmid constructs showed up-regulated expression of IFN-1 and its associated genes at day 3 post-vaccination in both kidney and spleen samples. Specifically, pEF-GD showed statistically higher expression of immune response genes than pEF-G and pEF-D treated group (p < 0.05/p < 0.001). After VHSV challenge, the fish group treated with pEF-GD showed higher survival rate than the pEF-G treated group, though difference was not statistically significant in the 15 dpv challenged group however in the 30 dpv challenged group, the difference was statistically significant (p < 0.05). Together, these results clearly demonstrate that DDX41 is an effective adjuvant for the G-based DNA vaccine in olive flounder. Our novel findings could facilitate the development of more effective DNA vaccines for the aquaculture industry.


Assuntos
Adjuvantes Imunológicos/farmacologia , RNA Helicases DEAD-box/farmacologia , Proteínas de Peixes/farmacologia , Linguados , Septicemia Hemorrágica Viral/prevenção & controle , Novirhabdovirus/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos/metabolismo , Animais , Glicoproteínas/imunologia , Septicemia Hemorrágica Viral/virologia , Imunidade/efeitos dos fármacos , Vacinas de DNA/imunologia
19.
Mol Immunol ; 68(2 Pt A): 194-202, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26355912

RESUMO

Influenza patients frequently display increased susceptibility to Streptococcus pneumoniae co-infection and sepsis, the prevalent cause of mortality during influenza pandemics. However, the detailed mechanisms by which an influenza infection predisposes patients to suffer pneumococcal pneumonia are not fully understood. A murine model for influenza infection closely reflects the observations in human patients, since if the animals that have recovered from influenza A virus (IAV) sublethal infection are challenged with S. pneumoniae, they undergo a usually fatal uncontrolled cytokine response. We have previously demonstrated both in vitro and in vivo that the expression and secretion of galectin-1 (Gal1) and galectin-3 (Gal3) are modulated during IAV infection, and that the viral neuraminidase unmasks galactosyl moieties in the airway epithelia. In this study we demonstrate in vitro that the binding of secreted Gal1 and Gal3 to the epithelial cell surface modulates the expression of SOCS1 and RIG1, and activation of ERK, AKT or JAK/STAT1 signaling pathways, leading to a disregulated expression and release of pro-inflammatory cytokines. Our results suggest that the activity of the viral and pneumococcal neuraminidases on the surface of the airway epithelial cells function as a "danger signal" that leads to rapid upregulation of SOCS1 expression to prevent an uncontrolled inflammatory response. The binding of extracellular Gal1 or Gal3 to the galactosyl moieties unmasked on the surface of airway epithelial cells can either "fine-tune" or severely disregulate this process, respectively, the latter potentially leading to hypercytokinemia.


Assuntos
RNA Helicases DEAD-box/genética , Células Epiteliais/imunologia , Galectina 1/farmacologia , Galectina 3/farmacologia , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Proteínas de Bactérias/farmacologia , Linhagem Celular Tumoral , Citocinas/biossíntese , Citocinas/metabolismo , Proteína DEAD-box 58 , RNA Helicases DEAD-box/imunologia , RNA Helicases DEAD-box/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Galectina 1/biossíntese , Galectina 1/imunologia , Galectina 3/biossíntese , Galectina 3/imunologia , Regulação da Expressão Gênica , Humanos , Inflamação , Vírus da Influenza A/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Camundongos , Neuraminidase/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores Imunológicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/imunologia , Proteínas Supressoras da Sinalização de Citocina/farmacologia
20.
J Virol ; 88(19): 11154-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031338

RESUMO

UNLABELLED: Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity, but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I interferon (IFN) production but antagonized the antiviral activity of beta interferon (IFN-ß) in DF-1 cells pretreated with IFN-α/ß. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-ß expression stimulated by naked IBDV genomic double-stranded RNA (dsRNA). The VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-ß expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5. IMPORTANCE: MDA5, a known pattern recognition receptor and cytoplasmic viral RNA sensor, plays a critical role in host antiviral innate immunity. Many pathogens escape or inhibit the host antiviral immune response, but the mechanisms involved are unclear for most pathogens. We report here that birnaviruses inhibit host antiviral innate immunity via the MDA5-dependent signaling pathway. The antiviral innate immune system involving IFN-ß did not function effectively during birnavirus infection, and the viral protein VP3 significantly inhibited IFN-ß expression stimulated by naked viral genomic dsRNA. We also show that VP3 blocks MDA5 binding to viral genomic dsRNA in vitro and in vivo. Our data reveal that birnavirus-encoded viral protein VP3 is an inhibitor of the antiviral innate immune response and inhibits the antiviral innate immune response via the MDA5-dependent signaling pathway.


Assuntos
Proteínas Aviárias/genética , RNA Helicases DEAD-box/genética , Imunidade Inata/efeitos dos fármacos , Vírus da Doença Infecciosa da Bursa/imunologia , RNA Viral/antagonistas & inibidores , Proteínas Estruturais Virais/genética , Animais , Proteínas Aviárias/imunologia , Proteínas Aviárias/farmacologia , Ligação Competitiva , Linhagem Celular , Galinhas , RNA Helicases DEAD-box/imunologia , RNA Helicases DEAD-box/farmacologia , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Vírus da Doença Infecciosa da Bursa/genética , Interferon beta/antagonistas & inibidores , Interferon beta/biossíntese , Interferon beta/imunologia , Ligação Proteica , RNA de Cadeia Dupla/antagonistas & inibidores , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/imunologia , RNA Viral/genética , RNA Viral/imunologia , Transdução de Sinais , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...